Chapter 9: Differential Equations
Complete Board Exam Focused Notes with Solution Methods
Exam Weightage & Blueprint
Total: ~10-12 MarksDifferential Equations is one of the most important chapters for Board exams. It combines calculus concepts with practical problem-solving techniques.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Order & Degree, Basic concepts |
| Short Answer (2M) | 2 | High | Variable separable method |
| Long Answer (4M) | 4 | Very High | Homogeneous DE, Linear DE |
| Long Answer (6M) | 6 | Medium | Application problems |
⏰ Last 24-Hour Checklist
- Order: Highest order derivative
- Degree: Power of highest order derivative (if polynomial)
- Variable Separable: $\frac{dy}{h(y)} = g(x)dx$
- Homogeneous: Put $y = vx$ or $x = vy$
- Linear DE: $\frac{dy}{dx} + Py = Q$
- I.F.: $e^{\int P dx}$
- Solution: $y \cdot I.F. = \int Q \cdot I.F. \, dx + C$
- Remember to substitute initial conditions
Basic Concepts ★★★★★
What is a Differential Equation?
Examples:
• $\frac{dy}{dx} + y = e^x$ (differential equation)
• $x^2 + 3x + 2 = 0$ (NOT a differential equation)
Order of a Differential Equation
Examples:
• $\frac{dy}{dx} = e^x$ → Order = 1
• $\frac{d^2y}{dx^2} + y = 0$ → Order = 2
• $\frac{d^3y}{dx^3} + x\frac{d^2y}{dx^2} = 0$ → Order = 3
Degree of a Differential Equation
Important: Degree is NOT defined if the equation is not a polynomial in derivatives.
✓ Degree Defined
• $\left(\frac{d^2y}{dx^2}\right)^3 + 5\frac{dy}{dx} = 0$
Order = 2, Degree = 3
✗ Degree NOT Defined
• $\frac{dy}{dx} + \sin\left(\frac{dy}{dx}\right) = 0$
Not polynomial in $\frac{dy}{dx}$
1. Find the highest order derivative → That's the ORDER
2. Check if equation is polynomial in derivatives → If YES, find power of highest derivative → That's DEGREE
3. If NOT polynomial in derivatives → Degree is NOT defined
General & Particular Solutions ★★★★☆
Particular Solution: The solution obtained by giving specific values to arbitrary constants in the general solution.
- A DE of order $n$ has $n$ arbitrary constants in its general solution
- To find particular solution, use given initial conditions
- Always verify your solution by substituting back in the original DE
Example: Verification
Q. Verify that $y = e^{-3x}$ is a solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$
Given: $y = e^{-3x}$
$\frac{dy}{dx} = -3e^{-3x}$
$\frac{d^2y}{dx^2} = 9e^{-3x}$
Substituting: $9e^{-3x} + (-3e^{-3x}) - 6e^{-3x} = 9e^{-3x} - 3e^{-3x} - 6e^{-3x} = 0$ ✓
Number of arbitrary constants in general solution = Order of DE
Number of arbitrary constants in particular solution = 0
Variable Separable Method ★★★★★
1. Check if DE can be written as $\frac{dy}{dx} = g(x) \cdot h(y)$
2. Separate: terms with $y$ on left, terms with $x$ on right
3. Integrate both sides: $\int \frac{1}{h(y)} dy = \int g(x) dx$
4. Add integration constant $C$ on one side only
5. Simplify to get the general solution
Example 1: Basic Variable Separable
Q. Solve: $\frac{dy}{dx} = \frac{1+x}{2-y}$ where $y \neq 2$
$(2-y)dy = (1+x)dx$
$\int (2-y) dy = \int (1+x) dx$
$2y - \frac{y^2}{2} = x + \frac{x^2}{2} + C$
$4y - y^2 = 2x + x^2 + 2C$
$x^2 + y^2 + 2x - 4y + K = 0$ (where $K = 2C$)
Example 2: Particular Solution
Q. Solve: $\frac{dy}{dx} = xy^2$ given $y = 1$ when $x = 0$
$\frac{dy}{y^2} = x dx$
$\int y^{-2} dy = \int x dx$
$-\frac{1}{y} = \frac{x^2}{2} + C$
$y = \frac{-2}{x^2 + 2C}$
When $x = 0, y = 1$: $1 = \frac{-2}{2C}$ → $C = -1$
Particular solution: $y = \frac{2}{2-x^2}$
Homogeneous Differential Equations 🔥🔥🔥
Homogeneous DE: A DE of the form $\frac{dy}{dx} = F(x,y)$ where $F(x,y)$ is homogeneous of degree zero.
Equivalently: $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$ or $\frac{dy}{dx} = h\left(\frac{x}{y}\right)$
1. For $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$: Put $y = vx$, then $\frac{dy}{dx} = v + x\frac{dv}{dx}$
2. For $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$: Put $x = vy$, then $\frac{dx}{dy} = v + y\frac{dv}{dy}$
3. Substitute and separate variables in $v$ and $x$ (or $y$)
4. Integrate and replace $v$ by $\frac{y}{x}$ (or $\frac{x}{y}$)
Example: Homogeneous DE
Q. Solve: $(x-y)\frac{dy}{dx} = x + 2y$
$\frac{dy}{dx} = \frac{x+2y}{x-y} = \frac{1 + 2(y/x)}{1 - (y/x)} = g(y/x)$ → Homogeneous ✓
$\frac{dy}{dx} = v + x\frac{dv}{dx}$
$v + x\frac{dv}{dx} = \frac{1 + 2v}{1 - v}$
$x\frac{dv}{dx} = \frac{1 + 2v}{1-v} - v = \frac{1 + 2v + v^2 + v}{1-v} = \frac{v^2 + 3v + 1}{1-v}$
$\frac{1-v}{v^2 + 3v + 1} dv = -\frac{dx}{x}$
After integration and substituting $v = \frac{y}{x}$:
$\log|x^2 + y^2 + 2xy| - 2\sqrt{3}\tan^{-1}\left(\frac{2y+3x}{\sqrt{3}x}\right) = C$
• If you can write $\frac{dy}{dx} = f(y/x)$ → Homogeneous
• Check: Replace $x$ with $\lambda x$ and $y$ with $\lambda y$. If $\lambda$ cancels → Homogeneous
• Common forms: $\frac{x^2 + y^2}{xy}$, $\frac{x+y}{x-y}$, etc.
Linear Differential Equations ★★★★★
Alternative form: $\frac{dx}{dy} + P_1x = Q_1$ where $P_1, Q_1$ are functions of $y$ only.
Step 1: Write in standard form $\frac{dy}{dx} + Py = Q$
Step 2: Find Integrating Factor (I.F.): $I.F. = e^{\int P dx}$
Step 3: Solution is: $y \cdot (I.F.) = \int Q \cdot (I.F.) \, dx + C$
• $P$ is coefficient of $y$
• $Q$ is the term without $y$
• I.F. = $e^{\text{integral of P}}$
• Multiply entire equation by I.F., left side becomes $\frac{d}{dx}[y \cdot I.F.]$
Example 1: Linear DE
Q. Solve: $\frac{dy}{dx} - y = \cos x$
Standard form: $\frac{dy}{dx} + (-1)y = \cos x$
$P = -1$, $Q = \cos x$
$I.F. = e^{\int (-1) dx} = e^{-x}$
$y \cdot e^{-x} = \int \cos x \cdot e^{-x} dx$
Using integration by parts twice:
$y \cdot e^{-x} = \frac{e^{-x}(\sin x - \cos x)}{2} + C$
$y = \frac{\sin x - \cos x}{2} + Ce^{x}$
Example 2: Alternative Form
Q. Solve: $x\frac{dy}{dx} + 2y = x^2$ (where $x \neq 0$)
$\frac{dy}{dx} + \frac{2}{x}y = x$
$P = \frac{2}{x}$, $Q = x$
$I.F. = e^{\int \frac{2}{x} dx} = e^{2\log|x|} = x^2$
$y \cdot x^2 = \int x \cdot x^2 dx = \int x^3 dx = \frac{x^4}{4} + C$
$y = \frac{x^2}{4} + \frac{C}{x^2}$
Previous Year Questions (PYQs)
(A) 1 (B) 2 (C) 3 (D) Not defined
Answer: (B) 2. The highest order derivative is $\frac{d^2y}{dx^2}$ with power 2.
Solution: This is variable separable.
$(x+y)dy = dx$
Integrating: $xy + \frac{y^2}{2} = x + C$
Hint: This is linear DE with $P = \frac{1}{x}$, $Q = x^2$
$I.F. = e^{\int \frac{1}{x}dx} = x$
Solution: $y \cdot x = \int x^3 dx = \frac{x^4}{4} + C$
Method: Homogeneous DE → Put $y = vx$
(A) $\cos x$ (B) $\sec x$ (C) $e^{\tan x}$ (D) $\tan x$
Answer: (B) $\sec x$. Since $I.F. = e^{\int \tan x dx} = e^{\log|\sec x|} = \sec x$
Exam Strategy & Mistake Bank
Common Mistakes 🚨
Scoring Tips 🏆
Practice Problems (Self-Assessment)
Level 1: Basic (2 Marks Each)
Q1. Find order and degree: $\left(\frac{dy}{dx}\right)^3 + 2\frac{dy}{dx} = x$
Ans: Order = 1, Degree = 3
Q2. Solve: $\frac{dy}{dx} = e^{x+y}$
Hint: $e^{-y}dy = e^x dx$
Q3. Verify that $y = e^x + 1$ is solution of $y'' - y' = 0$
Level 2: Intermediate (4 Marks Each)
Q4. Solve: $(x^2+xy)dy = (x^2+y^2)dx$
Hint: Homogeneous DE
Q5. Solve: $\frac{dy}{dx} + 2y\tan x = \sin x$ where $0 \leq x < \frac{\pi}{2}$
Hint: Linear DE with $I.F. = \sec^2 x$
Level 3: Advanced (6 Marks Each)
Q6. Solve: $(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$
Q7. Find equation of curve passing through $(1,1)$ whose differential equation is $x\frac{dy}{dx} = 2x^2 + y$
Formula Sheet (Must Remember!) 📝
Core Formulas
1. Order: Order of highest derivative2. Degree: Power of highest derivative (if polynomial)
3. Variable Separable: $\int \frac{dy}{h(y)} = \int g(x) dx + C$
4. Homogeneous: Put $y = vx$, then $\frac{dy}{dx} = v + x\frac{dv}{dx}$
5. Linear DE: $\frac{dy}{dx} + Py = Q$
6. I.F.: $e^{\int P dx}$
7. Solution: $y \cdot (I.F.) = \int Q \cdot (I.F.) \, dx + C$
Can you separate variables? → Use Variable Separable Method
Is it of form $\frac{dy}{dx} = g(y/x)$? → Use Homogeneous Method
Is it of form $\frac{dy}{dx} + Py = Q$? → Use Linear DE Method
Important Integration Results
1. $\int \frac{1}{x} dx = \log|x| + C$2. $\int e^{ax} dx = \frac{e^{ax}}{a} + C$
3. $\int \sec^2 x dx = \tan x + C$
4. $\int \tan x dx = \log|\sec x| + C$
5. $e^{\log f(x)} = f(x)$