Chapter 8: Application of Integrals
Complete Board Exam Focused Notes with Area Calculations
Exam Weightage & Blueprint
Total: ~8-10 MarksApplication of Integrals is crucial for finding areas under curves and between curves. This chapter directly applies integration concepts to practical geometry problems.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | High | Basic area calculations |
| Short Answer (2M) | 2 | Medium | Area under simple curves |
| Long Answer (4M) | 4 | Very High | Area between curves, ellipse, parabola |
| Long Answer (6M) | 6 | Medium | Complex area problems with multiple regions |
⏰ Last 24-Hour Checklist
- Area under curve: $A = \int_a^b y \, dx = \int_a^b f(x) \, dx$
- Area with y-axis: $A = \int_c^d x \, dy = \int_c^d g(y) \, dy$
- Area of circle: $x^2 + y^2 = a^2$ gives $A = \pi a^2$
- Area of ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ gives $A = \pi ab$
- Symmetry: Use 4× first quadrant for symmetric curves
- Negative areas: Take absolute value $\left|\int_a^b f(x) \, dx\right|$
- Between curves: $A = \int_a^b |f(x) - g(x)| \, dx$
- Strips method: Vertical strips (dx) or horizontal strips (dy)
Area Under Simple Curves ★★★★★
Fundamental Concept
- Vertical Strips: When integrating with respect to $x$, use $dA = y \, dx$
- Horizontal Strips: When integrating with respect to $y$, use $dA = x \, dy$
- Choose the strip orientation that makes integration easier
- For curves symmetric about axes, calculate area in one quadrant and multiply
Area with Respect to Y-axis
Handling Curves Above and Below X-axis
• Find the points where curve crosses x-axis
• Calculate area of each portion separately
• Total area = $|A_1| + |A_2| + |A_3| + ...$
• Take absolute values to ensure all areas are positive
Area of Circle ⭕ ★★★★☆
Circle: $x^2 + y^2 = a^2$
• Equation: $x^2 + y^2 = a^2$
• This gives: $y = \pm\sqrt{a^2 - x^2}$
• Circle is symmetric about both x-axis and y-axis
Using $x = \sqrt{a^2 - y^2}$ and horizontal strips: $$A = 4\int_0^a \sqrt{a^2 - y^2} \, dy = \pi a^2$$ Both methods give the same result!
Area of Ellipse 🔵 ★★★★★
Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
• Standard form: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
• This gives: $y = \pm\frac{b}{a}\sqrt{a^2 - x^2}$
• Ellipse is symmetric about both axes
• When $a = b$, it becomes a circle
From $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we get $x = \frac{a}{b}\sqrt{b^2 - y^2}$ $$A = 4\int_0^b \frac{a}{b}\sqrt{b^2 - y^2} \, dy = \pi ab$$
- When $a = b$: Ellipse becomes circle with area $\pi a^2$
- When $a > b$: Major axis along x-axis
- When $b > a$: Major axis along y-axis
Solved Examples (Board Marking Scheme)
Example 1: Area bounded by line, x-axis and ordinates
Q. Find the area of the region bounded by the line $y = 3x + 2$, the x-axis and the ordinates $x = -1$ and $x = 1$.
When $y = 0$: $3x + 2 = 0 \Rightarrow x = -\frac{2}{3}$
For $-1 \leq x < -\frac{2}{3}$: curve is below x-axis
For $-\frac{2}{3} < x \leq 1$: curve is above x-axis
Area = $\left|\int_{-1}^{-2/3} (3x + 2) \, dx\right| + \int_{-2/3}^{1} (3x + 2) \, dx$
$= \left|\left[\frac{3x^2}{2} + 2x\right]_{-1}^{-2/3}\right| + \left[\frac{3x^2}{2} + 2x\right]_{-2/3}^{1}$
$= \left|\left(\frac{2}{3} - \frac{4}{3}\right) - \left(\frac{3}{2} - 2\right)\right| + \left(\frac{3}{2} + 2\right) - \left(\frac{2}{3} - \frac{4}{3}\right)$
$= \left|-\frac{2}{3} + \frac{1}{2}\right| + \frac{7}{2} + \frac{2}{3}$
$= \frac{1}{6} + \frac{25}{6} = \frac{26}{6} = \frac{13}{3}$ square units
Example 2: Area bounded by $y = \cos x$
Q. Find the area bounded by the curve $y = \cos x$ between $x = 0$ and $x = 2\pi$.
$\cos x > 0$ for $0 \leq x \leq \frac{\pi}{2}$ and $\frac{3\pi}{2} \leq x \leq 2\pi$
$\cos x < 0$ for $\frac{\pi}{2} \leq x \leq \frac{3\pi}{2}$
Area = $\int_0^{\pi/2} \cos x \, dx + \left|\int_{\pi/2}^{3\pi/2} \cos x \, dx\right| + \int_{3\pi/2}^{2\pi} \cos x \, dx$
$= [\sin x]_0^{\pi/2} + |[\sin x]_{\pi/2}^{3\pi/2}| + [\sin x]_{3\pi/2}^{2\pi}$
$= (1 - 0) + |(-1 - 1)| + (0 - (-1))$
$= 1 + 2 + 1 = 4$ square units
Example 3: Area of Ellipse
Q. Find the area enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
Comparing with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we get $a^2 = 16$ and $b^2 = 9$
Therefore, $a = 4$ and $b = 3$
From symmetry: Total area = $4 \times$ (Area in first quadrant)
$y = \frac{3}{4}\sqrt{16 - x^2}$ in first quadrant
Area = $4\int_0^4 \frac{3}{4}\sqrt{16 - x^2} \, dx$
$= 3\int_0^4 \sqrt{16 - x^2} \, dx$
$= 3\left[\frac{x}{2}\sqrt{16-x^2} + \frac{16}{2}\sin^{-1}\frac{x}{4}\right]_0^4$
$= 3\left[0 + 8 \times \frac{\pi}{2} - 0\right] = 3 \times 4\pi = 12\pi$ square units
Previous Year Questions (PYQs)
(A) $\pi$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$
Answer: (A) $\pi$. This is exactly one quarter of the circle with radius 2, so area = $\frac{1}{4}\pi(2)^2 = \pi$ square units.
Solution:
• The parabola $y^2 = 4x$ is symmetric about x-axis
• Area = $2\int_0^3 y \, dx = 2\int_0^3 2\sqrt{x} \, dx$
• $= 4\left[\frac{2x^{3/2}}{3}\right]_0^3 = \frac{8}{3}[3\sqrt{3}] = 8\sqrt{3}$ square units
Hint: Find intersection points, then integrate: $\int_0^{4a/m^2} (2\sqrt{ax} - mx) \, dx$
Answer: $\frac{8a^2}{3m^3}$ square units
Solution: Need to find intersection of $y = x^2 + 1$ and $y = x + 1$, then split integral appropriately.
Intersection at $x = 0$ (both give $y = 1$), so integrate the difference from 0 to 2.
(A) 2 (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$
Answer: (D) $\frac{9}{2}$. Using $x = \frac{y^2}{4}$, Area = $\int_0^3 \frac{y^2}{4} \, dy = \frac{1}{4} \times \frac{27}{3} = \frac{9}{2}$ square units.
Exam Strategy & Mistake Bank
Common Mistakes 🚨
Scoring Tips 🏆
Important Formulas & Results
1. Circle: $x^2 + y^2 = a^2 \Rightarrow$ Area $= \pi a^2$
2. Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow$ Area $= \pi ab$
3. Parabola: $y^2 = 4ax$ from $x = 0$ to $x = h \Rightarrow$ Area $= \frac{4}{3}\sqrt{ah^3}$
4. Under curve: $A = \int_a^b f(x) \, dx$ (take absolute value if negative)
5. Between curves: $A = \int_a^b |f(x) - g(x)| \, dx$
1. $\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + C$
2. $\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2}\ln|x + \sqrt{x^2+a^2}| + C$
3. $\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln|x + \sqrt{x^2-a^2}| + C$
Quick Reference Table
| Curve Type | Standard Form | Area Formula |
|---|---|---|
| Circle | $x^2 + y^2 = a^2$ | $\pi a^2$ |
| Ellipse | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ | $\pi ab$ |
| Parabola (y² form) | $y^2 = 4ax$ | Use integration |
| Parabola (x² form) | $x^2 = 4ay$ | Use integration |
Practice Problems (Self-Assessment)
Level 1: Basic (2 Marks Each)
Q1. Find the area of the region bounded by the curve $y = x^2$, x-axis and the lines $x = 1$ and $x = 2$.
Hint: $\int_1^2 x^2 \, dx$
Q2. Find the area bounded by the curve $y = x^4$, x-axis and the lines $x = 1$ and $x = 5$.
Q3. Sketch the graph of $y = |x + 3|$ and evaluate $\int_0^6 |x + 3| \, dx$.
Level 2: Intermediate (4 Marks Each)
Q4. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
Hint: Use $a = 2, b = 3$ and formula $\pi ab$
Q5. Find the area bounded by the curve $y = \sin x$ between $x = 0$ and $x = 2\pi$.
Q6. Find the area of the region bounded by the parabola $y^2 = 4x$ and the line $y = 2x$.
Level 3: Advanced (6 Marks Each)
Q7. Using integration, find the area of the triangular region whose sides have equations $y = 2x + 1$, $y = 3x + 1$ and $x = 4$.
Q8. Find the area of the region: $\{(x,y): x^2 + y^2 \leq 1 \leq x + y\}$
Hint: Area between circle and line - requires careful setup
Formula Sheet (Must Remember!) 📝
Core Formulas
1. Area under curve (x-axis): $A = \int_a^b y \, dx = \int_a^b f(x) \, dx$2. Area with y-axis: $A = \int_c^d x \, dy = \int_c^d g(y) \, dy$
3. Area between curves: $A = \int_a^b |f(x) - g(x)| \, dx$
4. Circle area: $x^2 + y^2 = a^2 \Rightarrow A = \pi a^2$
5. Ellipse area: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow A = \pi ab$
6. Symmetry: For symmetric curves, $A = 4 \times A_{\text{first quadrant}}$
Integration Formulas
7. $\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + C$8. $\int_0^a \sqrt{a^2 - x^2} \, dx = \frac{\pi a^2}{4}$
9. For negative areas: Always take $\left|\int_a^b f(x) \, dx\right|$
- ✓ Sketch the curve before solving
- ✓ Check for symmetry to simplify calculations
- ✓ Identify where curve crosses axes
- ✓ Split integrals at crossing points
- ✓ Take absolute values for negative areas
- ✓ Write limits clearly and substitute carefully