All Chapters

Trigonometric Functions

Class 11 Maths • Chapter 03 • Comprehensive Interactive Notes

1. Angles

Angle is a measure of rotation of a given ray about its initial point. There are two main units of measurement:

Angle Transformer

Convert Degrees to Radians instantly.

Formula: \( Radian = Degree \times \frac{\pi}{180} \)

2. Signs of Trig Functions

The sign of trigonometric functions depends on the quadrant in which the angle lies.

Rule: "All Silver Tea Cups" (ASTC)

ASTC Quadrant Explorer

Click a quadrant to see positive functions.

I II III IV
Click a quadrant above!

2.1 Trigonometric Functions of Negative Angles

Using symmetry of unit circle:

Exam Tip: CBSE often asks to simplify expressions using even–odd nature.

2.2 Trigonometric Ratios of Allied Angles

Angle Equivalent Ratio
\( \sin(\pi - x) \) \( \sin x \)
\( \cos(\pi - x) \) \( -\cos x \)
\( \sin(\frac{\pi}{2} - x) \) \( \cos x \)
\( \tan(\pi + x) \) \( \tan x \)
Memory Rule: ASTC decides the sign, reference angle decides the value.

2.3 Domain & Range of Trigonometric Functions

Function Domain Range
\( \sin x \) \( R \) \( [-1,1] \)
\( \tan x \) \( x \neq (2n+1)\frac{\pi}{2} \) \( R \)
\( \sec x \) \( x \neq (2n+1)\frac{\pi}{2} \) \( (-\infty,-1] \cup [1,\infty) \)

3. Wave Lab: Graphs

Visualize the periodic nature of Sine, Cosine, and Tangent functions.

4. Identity Vault

Comprehensive list of trigonometric identities.

  • \( \sin(x+y) = \sin x \cos y + \cos x \sin y \)
  • \( \sin(x-y) = \sin x \cos y - \cos x \sin y \)
  • \( \cos(x+y) = \cos x \cos y - \sin x \sin y \)
  • \( \cos(x-y) = \cos x \cos y + \sin x \sin y \)
  • \( \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \)
  • \( \sin 2x = 2 \sin x \cos x = \frac{2\tan x}{1+\tan^2 x} \)
  • \( \cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x \)
  • \( \tan 2x = \frac{2\tan x}{1-\tan^2 x} \)
  • \( \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} \)
  • \( \sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2} \)
  • \( \cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2} \)
  • \( \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2} \)

5. Trigonometric Equations

For any integer \( n \):

Equation General Solution
\( \sin x = 0 \) \( x = n\pi \)
\( \cos x = 0 \) \( x = (2n+1)\frac{\pi}{2} \)
\( \tan x = 0 \) \( x = n\pi \)
\( \sin x = \sin y \) \( x = n\pi + (-1)^n y \)
\( \cos x = \cos y \) \( x = 2n\pi \pm y \)
\( \tan x = \tan y \) \( x = n\pi + y \)

5.1 Solutions in a Given Interval

Find solutions of trigonometric equations in \( [0, 2\pi] \).

Example: Solve \( \sin x = \frac{1}{2} \) in \( [0,2\pi] \)

Solutions: \( x = \frac{\pi}{6}, \frac{5\pi}{6} \)

Exam Tip: Always check quadrant and interval limits.

Concept Mastery Quiz

1. \( \sin^2 x + \cos^2 x \) equals:


2. In the 3rd Quadrant, which is positive?


3. The value of \( \sin(180^\circ) \) is:


4. \( \cos(2\pi - x) \) is equal to:


5. The range of \( f(x) = \sin x \) is: