Exercise 11.4 Practice

Volume of a Sphere and Hemisphere

Q1: Volume of Sphere
00:00
Find the volume of a sphere whose radius is:
(i) $21 \text{ cm}$
(ii) $3.5 \text{ cm}$
r
Formula: Volume of Sphere $V = \frac{4}{3}\pi r^3$.
(i) Radius $r = 21 \text{ cm}$:
$V = \frac{4}{3} \times \frac{22}{7} \times 21 \times 21 \times 21$
$= 4 \times 22 \times 21 \times 21 = 88 \times 441$
$= 38808 \text{ cm}^3$.
(ii) Radius $r = 3.5 \text{ cm}$:
$V = \frac{4}{3} \times \frac{22}{7} \times (3.5)^3$
$= \frac{4}{3} \times \frac{22}{7} \times 42.875$
$= \frac{88}{21} \times 42.875 \approx 179.67 \text{ cm}^3$.
(i) $38808 \text{ cm}^3$, (ii) $179.67 \text{ cm}^3$
Q2: Water Displaced
00:00
Find the amount of water displaced by a solid spherical ball of diameter:
(i) $14 \text{ cm}$
(ii) $0.42 \text{ m}$
Amount of water displaced = Volume of the sphere.
(i) Diameter $d = 14 \text{ cm} \Rightarrow r = 7 \text{ cm}$:
$V = \frac{4}{3} \times \frac{22}{7} \times 7^3$
$= \frac{4}{3} \times 22 \times 49 = \frac{4312}{3} \approx 1437.33 \text{ cm}^3$.
(ii) Diameter $d = 0.42 \text{ m} \Rightarrow r = 0.21 \text{ m}$:
$V = \frac{4}{3} \times \frac{22}{7} \times (0.21)^3$
$= \frac{4}{3} \times \frac{22}{7} \times 0.009261$
$= 0.038808 \text{ m}^3$.
(i) $1437.33 \text{ cm}^3$, (ii) $0.038808 \text{ m}^3$
Q3: Mass of Ball
00:00
The diameter of a metallic ball is $8.4 \text{ cm}$. What is the mass of the ball, if the density of the metal is $5 \text{ g per cm}^3$?
Radius $r = \frac{8.4}{2} = 4.2 \text{ cm}$.
Volume $V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \frac{22}{7} \times (4.2)^3$
$= \frac{88}{21} \times 74.088 = 310.464 \text{ cm}^3$.
Mass = Volume $\times$ Density
$= 310.464 \times 5 = 1552.32 \text{ g}$.
Mass $= 1.55 \text{ kg}$ (approx)
Q4: Volume Ratio
00:00
The diameter of planet A is approximately half the diameter of planet B. What is the ratio of their volumes?
Let diameter of planet B be $d$. Radius $R = d/2$.
Diameter of planet A $= d/2$. Radius $r = d/4$.
Ratio of Volumes $= \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3} = \left(\frac{r}{R}\right)^3$.
$\frac{r}{R} = \frac{d/4}{d/2} = \frac{1}{2}$.
Ratio $= \left(\frac{1}{2}\right)^3 = \frac{1}{8}$.
Ratio $= 1:8$
Q5: Capacity of Bowl
00:00
How many litres of milk can a hemispherical bowl of diameter $21 \text{ cm}$ hold?
d=21
Radius $r = \frac{21}{2} = 10.5 \text{ cm}$.
Volume of Hemisphere $= \frac{2}{3}\pi r^3$
$= \frac{2}{3} \times \frac{22}{7} \times (10.5)^3$
$= \frac{44}{21} \times 1157.625 = 2425.5 \text{ cm}^3$.
Capacity in litres $= \frac{2425.5}{1000} = 2.4255 \text{ litres}$.
Capacity $\approx 2.43 \text{ litres}$
Q6: Volume of Material
00:00
A hemispherical tank is made up of an iron sheet $2 \text{ cm}$ thick. If the inner radius is $2 \text{ m}$, then find the volume of the iron used to make the tank.
Inner radius $r = 2 \text{ m}$.
Thickness $= 2 \text{ cm} = 0.02 \text{ m}$.
Outer radius $R = 2 + 0.02 = 2.02 \text{ m}$.
Volume of iron $= \text{Outer Volume} - \text{Inner Volume}$
$= \frac{2}{3}\pi (R^3 - r^3)$
$= \frac{2}{3} \times \frac{22}{7} \times ((2.02)^3 - 2^3)$
$= \frac{44}{21} \times (8.242408 - 8)$
$= \frac{44}{21} \times 0.242408 \approx 0.5079 \text{ m}^3$.
Volume $\approx 0.508 \text{ m}^3$
Q7: Volume from Surface Area
00:00
Find the volume of a sphere whose surface area is $616 \text{ cm}^2$.
Surface Area $S = 4\pi r^2 = 616$.
$4 \times \frac{22}{7} \times r^2 = 616$.
$r^2 = \frac{616 \times 7}{88} = 49 \Rightarrow r = 7 \text{ cm}$.
Volume $V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \frac{22}{7} \times 7^3$
$= \frac{4}{3} \times 22 \times 49 = 1437.33 \text{ cm}^3$.
Volume $= 1437.33 \text{ cm}^3$
Q8: Dome Whitewashing
00:00
A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of ₹$6160$. If the cost of white-washing is ₹$20$ per square metre, find the:
(i) inside surface area of the dome,
(ii) volume of the air inside the dome.
(i) Inside Surface Area:
Area $= \frac{\text{Total Cost}}{\text{Rate}} = \frac{6160}{20} = 308 \text{ m}^2$.
(ii) Volume of air:
CSA $= 2\pi r^2 = 308$.
$2 \times \frac{22}{7} \times r^2 = 308 \Rightarrow r^2 = \frac{308 \times 7}{44} = 49$.
$r = 7 \text{ m}$.
Volume $= \frac{2}{3}\pi r^3 = \frac{2}{3} \times \frac{22}{7} \times 343$
$= \frac{44}{3} \times 49 = 718.67 \text{ m}^3$.
Area $= 308 \text{ m}^2$, Volume $= 718.67 \text{ m}^3$
Q9: Melting Spheres
00:00
Eight solid iron spheres, each of radius $r$ and surface area $S$ are melted to form a sphere with surface area $S'$. Find the:
(i) radius $r'$ of the new sphere,
(ii) ratio of $S$ and $S'$.
(i) Radius $r'$:
Volume of 8 spheres = Volume of new sphere.
$8 \times \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (r')^3$
$8r^3 = (r')^3 \Rightarrow r' = \sqrt[3]{8r^3} = 2r$.
(ii) Ratio of $S$ and $S'$:
$S = 4\pi r^2$ and $S' = 4\pi (r')^2 = 4\pi (2r)^2 = 16\pi r^2$.
Ratio $\frac{S}{S'} = \frac{4\pi r^2}{16\pi r^2} = \frac{1}{4}$.
(i) $r' = 2r$, (ii) Ratio $1:4$