Exercise 11.2 Practice

Surface Area of Spheres and Hemispheres

Q1: Surface Area of Sphere
00:00
Find the surface area of a sphere of radius:
(i) $14 \text{ cm}$
(ii) $21 \text{ cm}$
r
Formula: Surface Area of Sphere $= 4\pi r^2$.
(i) Radius $r = 14 \text{ cm}$:
Area $= 4 \times \frac{22}{7} \times 14 \times 14$
$= 4 \times 22 \times 2 \times 14$
$= 88 \times 28 = 2464 \text{ cm}^2$.
(ii) Radius $r = 21 \text{ cm}$:
Area $= 4 \times \frac{22}{7} \times 21 \times 21$
$= 4 \times 22 \times 3 \times 21$
$= 88 \times 63 = 5544 \text{ cm}^2$.
(i) $2464 \text{ cm}^2$, (ii) $5544 \text{ cm}^2$
Q2: Surface Area from Diameter
00:00
Find the surface area of a sphere of diameter:
(i) $28 \text{ cm}$
(ii) $7 \text{ cm}$
(i) Diameter $d = 28 \text{ cm} \Rightarrow r = 14 \text{ cm}$:
Area $= 4\pi r^2 = 4 \times \frac{22}{7} \times 14 \times 14$
$= 2464 \text{ cm}^2$.
(ii) Diameter $d = 7 \text{ cm} \Rightarrow r = 3.5 \text{ cm}$:
Area $= 4 \times \frac{22}{7} \times 3.5 \times 3.5$
$= 4 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$
$= 22 \times 7 = 154 \text{ cm}^2$.
(i) $2464 \text{ cm}^2$, (ii) $154 \text{ cm}^2$
Q3: Hemisphere TSA
00:00
Find the total surface area of a hemisphere of radius $20 \text{ cm}$. (Use $\pi = 3.14$)
r=20
Radius $r = 20 \text{ cm}$.
Total Surface Area (TSA) of Hemisphere $= 3\pi r^2$.
TSA $= 3 \times 3.14 \times (20)^2$
$= 3 \times 3.14 \times 400$
$= 1200 \times 3.14$
$= 3768 \text{ cm}^2$.
TSA $= 3768 \text{ cm}^2$
Q4: Balloon Expansion
00:00
The radius of a spherical balloon increases from $7 \text{ cm}$ to $14 \text{ cm}$ as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
Let $r_1 = 7 \text{ cm}$ and $r_2 = 14 \text{ cm}$.
Surface Area $S_1 = 4\pi r_1^2$.
Surface Area $S_2 = 4\pi r_2^2$.
Ratio $\frac{S_1}{S_2} = \frac{4\pi r_1^2}{4\pi r_2^2} = \left(\frac{r_1}{r_2}\right)^2$
$= \left(\frac{7}{14}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$.
Ratio $= 1:4$
Q5: Tin-Plating Cost
00:00
A hemispherical bowl made of brass has inner diameter $10.5 \text{ cm}$. Find the cost of tin-plating it on the inside at the rate of ₹$16$ per $100 \text{ cm}^2$.
d=10.5
Inner diameter $= 10.5 \text{ cm} \Rightarrow r = 5.25 \text{ cm}$.
Inner Curved Surface Area $= 2\pi r^2$
$= 2 \times \frac{22}{7} \times 5.25 \times 5.25$
$= 44 \times 0.75 \times 5.25$
$= 33 \times 5.25 = 173.25 \text{ cm}^2$.
Cost $= \frac{\text{Area}}{100} \times \text{Rate}$
$= \frac{173.25}{100} \times 16$
$= 1.7325 \times 16 = 27.72$.
Cost = ₹$27.72$
Q6: Find Radius
00:00
Find the radius of a sphere whose surface area is $616 \text{ cm}^2$.
Surface Area $= 4\pi r^2 = 616$.
$4 \times \frac{22}{7} \times r^2 = 616$.
$r^2 = \frac{616 \times 7}{4 \times 22}$
$r^2 = \frac{616 \times 7}{88} = 7 \times 7 = 49$.
$r = \sqrt{49} = 7 \text{ cm}$.
Radius $= 7 \text{ cm}$
Q7: Moon vs Earth
00:00
The diameter of the moon is approximately one-fourth of the diameter of the earth. Find the ratio of their surface areas.
Moon
Earth
Let diameter of earth be $d$. Radius of earth $R = \frac{d}{2}$.
Diameter of moon $= \frac{1}{4}d$. Radius of moon $r = \frac{1}{2}(\frac{1}{4}d) = \frac{d}{8}$.
Ratio of Surface Areas $= \frac{4\pi r^2}{4\pi R^2} = \left(\frac{r}{R}\right)^2$.
$\frac{r}{R} = \frac{d/8}{d/2} = \frac{2}{8} = \frac{1}{4}$.
Ratio $= \left(\frac{1}{4}\right)^2 = \frac{1}{16}$.
Ratio $= 1:16$
Q8: Cylinder Enclosing Sphere
00:00
A right circular cylinder just encloses a sphere of radius $r$. Find:
(i) surface area of the sphere,
(ii) curved surface area of the cylinder,
(iii) ratio of the areas obtained in (i) and (ii).
r
(i) Surface Area of Sphere:
$S_1 = 4\pi r^2$.
(ii) CSA of Cylinder:
Since the cylinder just encloses the sphere, its radius is $r$ and height $h = 2r$ (diameter of sphere).
$S_2 = 2\pi r h = 2\pi r (2r) = 4\pi r^2$.
(iii) Ratio:
$\frac{S_1}{S_2} = \frac{4\pi r^2}{4\pi r^2} = 1$.
Ratio $= 1:1$
Q9: Dome Painting
00:00
A hemispherical dome of a building needs to be painted. If the circumference of the base of the dome is $17.6 \text{ m}$, find the cost of painting it, given the cost of painting is ₹$5$ per $100 \text{ cm}^2$.
Circumference = 17.6m
Circumference of base $= 2\pi r = 17.6 \text{ m}$.
$2 \times \frac{22}{7} \times r = 17.6$
$44r = 17.6 \times 7 = 123.2$
$r = \frac{123.2}{44} = 2.8 \text{ m}$.
CSA of Dome $= 2\pi r^2$
$= 2 \times \frac{22}{7} \times 2.8 \times 2.8$
$= 44 \times 0.4 \times 2.8$
$= 17.6 \times 2.8 = 49.28 \text{ m}^2$.
Cost rate $= $ ₹$5$ per $100 \text{ cm}^2$.
$1 \text{ m}^2 = 10000 \text{ cm}^2$.
Rate per $\text{m}^2 = \frac{5}{100} \times 10000 = $ ₹$500$.
Total Cost $= 49.28 \times 500 = $ ₹$24640$.
Cost = ₹$24640$