For the matrix \( A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \), show that \( A^3 - 3A^2 - 9A - 5I = O \). Hence find \( A^{-1} \).
View Solution
Calculations of \( A^2, A^3 \) verify the equation.
Multiplying by \( A^{-1} \): \( 5A^{-1} = A^2 - 3A - 9I \).
\( A^{-1} = \frac{1}{5} (A^2 - 3A - 9I) \)
Practice Question 16
If \( A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \), prove that \( A^3 - 6A^2 + 7A + 2I = O \).
View Solution
Substitute \( A, A^2, A^3 \) into the polynomial. All elements sum to zero.
Verified.
Practice Question 17 (MCQ)
Let A be a nonsingular square matrix of order \( 3 \times 3 \). Then \( |\text{adj } A| \) is equal to:
(A) \( |A| \) (B) \( |A|^2 \) (C) \( |A|^3 \) (D) \( 3|A| \)
View Solution
Formula: \( |\text{adj } A| = |A|^{n-1} \).
Here \( n=3 \), so \( |A|^{3-1} = |A|^2 \).
Correct Option: (B)
Practice Question 18 (MCQ)
If A is an invertible matrix of order 2, then \( \det(A^{-1}) \) is equal to:
(A) \( \det(A) \) (B) \( 1/\det(A) \) (C) 1 (D) 0