Chapter 2: Inverse Trigonometric Functions
Complete Board Exam Focused Notes with Domains, Ranges & PYQs
Exam Weightage & Blueprint
Total: ~8 MarksInverse Trigonometric Functions is a crucial chapter that connects with Calculus (Differentiation & Integration). Questions are highly formula-based and require memorization of domains and ranges.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Principal Values, Domain/Range identification |
| Short Answer (2M) | 2 | High | Finding principal values, simplification |
| Short Answer (3M) | 3 | Very High | Proving identities, simplifying expressions |
| Long Answer | 4-5 | Medium | Complex proofs with multiple identities |
⏰ Last 24-Hour Checklist
- Domain & Range Table: All 6 functions memorized
- Principal Value Branch: Know the range for each function
- $\sin^{-1}x$ range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $\cos^{-1}x$ range: $[0, \pi]$
- $\tan^{-1}x$ range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- Important Identity: $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$
- Important Identity: $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$
- Important Identity: $\sec^{-1}x + \text{cosec}^{-1}x = \frac{\pi}{2}$
- Composition: $\sin(\sin^{-1}x) = x$, $\sin^{-1}(\sin x) = x$
- Addition Formulas: $\tan^{-1}x + \tan^{-1}y$ formulas
Domain & Range - Master Table ★★★★★
Principal Value Branches (The Most Important Table!)
| Function | Notation | Domain | Range (Principal Branch) |
|---|---|---|---|
| Arc Sine | $\sin^{-1}x$ or $\arcsin x$ | $[-1, 1]$ | $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ |
| Arc Cosine | $\cos^{-1}x$ or $\arccos x$ | $[-1, 1]$ | $[0, \pi]$ |
| Arc Tangent | $\tan^{-1}x$ or $\arctan x$ | $\mathbb{R}$ (all real numbers) | $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ |
| Arc Cotangent | $\cot^{-1}x$ or $\text{arccot } x$ | $\mathbb{R}$ (all real numbers) | $(0, \pi)$ |
| Arc Secant | $\sec^{-1}x$ or $\text{arcsec } x$ | $\mathbb{R} - (-1, 1)$ or $|x| \geq 1$ | $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ |
| Arc Cosecant | $\text{cosec}^{-1}x$ or $\text{arccosec } x$ | $\mathbb{R} - (-1, 1)$ or $|x| \geq 1$ | $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ |
• sin, cosec, tan have $-\frac{\pi}{2}$ in their ranges
• cos, sec, cot have $0$ as starting point in their ranges
• sin, cos, sec, cosec have domain restricted to $[-1, 1]$ or $|x| \geq 1$
• tan, cot accept all real numbers as domain
Properties & Identities 🔥🔥🔥
1. Complementary Angle Identities
2. Negative Angle Identities
3. Reciprocal Identities
4. Composition Properties
Addition & Subtraction Formulas ★★★★☆
Tangent Addition Formulas (Most Important!)
Double & Triple Angle Formulas
Solved Examples (Board Marking Scheme)
Q1. Find the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$. (2 Marks)
Let $\sin^{-1}\left(-\frac{1}{2}\right) = y$
Then $\sin y = -\frac{1}{2}$
We know that $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$
The range of principal value branch of $\sin^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Since $-\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, the principal value is $\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$
Q2. Prove that $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$ for $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. (3 Marks)
Let $\sin^{-1}x = \theta$, then $x = \sin\theta$
We need to prove: $3\theta = \sin^{-1}(3x - 4x^3)$
We know that $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$
Substituting $x = \sin\theta$:
$\sin 3\theta = 3x - 4x^3$
Taking $\sin^{-1}$ on both sides:
$3\theta = \sin^{-1}(3x - 4x^3)$
Since $\theta = \sin^{-1}x$, we get:
$3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$
Hence proved.
Q3. Simplify: $\tan^{-1}\left(\frac{\cos x}{1 + \sin x}\right)$, where $-\frac{\pi}{2} < x < \frac{3\pi}{2}$. (3 Marks)
We know: $\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2}$ and $1 + \sin x = \left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2$
Alternatively, use: $\cos x = 1 - 2\sin^2\frac{x}{2}$ and $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$
$\frac{\cos x}{1 + \sin x} = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}$
$= \frac{\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)}{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2}$
$= \frac{\cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}}$
$= \frac{1 - \tan\frac{x}{2}}{1 + \tan\frac{x}{2}} = \frac{\tan\frac{\pi}{4} - \tan\frac{x}{2}}{1 + \tan\frac{\pi}{4}\tan\frac{x}{2}}$
$= \tan\left(\frac{\pi}{4} - \frac{x}{2}\right)$
Therefore: $\tan^{-1}\left(\frac{\cos x}{1 + \sin x}\right) = \frac{\pi}{4} - \frac{x}{2}$
Previous Year Questions (PYQs)
(A) $\frac{5\pi}{12}$ (B) $\frac{7\pi}{12}$ (C) $\frac{3\pi}{4}$ (D) $\frac{2\pi}{3}$
Solution: $\tan^{-1}(1) = \frac{\pi}{4}$, $\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$, $\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$
Sum = $\frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6} = \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$
Answer: (C)
Solution: Since $\frac{3\pi}{5} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we cannot directly write $\sin^{-1}(\sin x) = x$.
We know $\sin\frac{3\pi}{5} = \sin\left(\pi - \frac{3\pi}{5}\right) = \sin\frac{2\pi}{5}$
Since $\frac{2\pi}{5} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we have:
$\sin^{-1}\left(\sin\frac{3\pi}{5}\right) = \frac{2\pi}{5}$
Solution: Using the formula $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$:
LHS = $2\tan^{-1}\frac{1}{3} = \tan^{-1}\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}$
$= \tan^{-1}\frac{\frac{2}{3}}{1 - \frac{1}{9}} = \tan^{-1}\frac{\frac{2}{3}}{\frac{8}{9}} = \tan^{-1}\frac{2 \times 9}{3 \times 8} = \tan^{-1}\frac{3}{4}$ = RHS
Hence proved.
Hint: Let $\sin^{-1}\frac{3}{5} = \alpha$ and $\sin^{-1}\frac{8}{17} = \beta$.
Find $\cos\alpha$ and $\cos\beta$ using $\cos^2\theta + \sin^2\theta = 1$.
Calculate $\tan\alpha$ and $\tan\beta$, then use $\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}$.
Exam Strategy & Mistake Bank
Common Mistakes 🚨
Scoring Tips 🏆
Standard Values (Must Memorize!) 📝
Sine Inverse Values
| $x$ | $\sin^{-1}x$ |
|---|---|
| $-1$ | $-\frac{\pi}{2}$ |
| $-\frac{\sqrt{3}}{2}$ | $-\frac{\pi}{3}$ |
| $-\frac{1}{\sqrt{2}}$ | $-\frac{\pi}{4}$ |
| $-\frac{1}{2}$ | $-\frac{\pi}{6}$ |
| $0$ | $0$ |
| $\frac{1}{2}$ | $\frac{\pi}{6}$ |
| $\frac{1}{\sqrt{2}}$ | $\frac{\pi}{4}$ |
| $\frac{\sqrt{3}}{2}$ | $\frac{\pi}{3}$ |
| $1$ | $\frac{\pi}{2}$ |
Cosine Inverse Values
| $x$ | $\cos^{-1}x$ |
|---|---|
| $-1$ | $\pi$ |
| $-\frac{\sqrt{3}}{2}$ | $\frac{5\pi}{6}$ |
| $-\frac{1}{\sqrt{2}}$ | $\frac{3\pi}{4}$ |
| $-\frac{1}{2}$ | $\frac{2\pi}{3}$ |
| $0$ | $\frac{\pi}{2}$ |
| $\frac{1}{2}$ | $\frac{\pi}{3}$ |
| $\frac{1}{\sqrt{2}}$ | $\frac{\pi}{4}$ |
| $\frac{\sqrt{3}}{2}$ | $\frac{\pi}{6}$ |
| $1$ | $0$ |
Tangent Inverse Values
| $x$ | $-\sqrt{3}$ | $-1$ | $-\frac{1}{\sqrt{3}}$ | $0$ | $\frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ |
|---|---|---|---|---|---|---|---|
| $\tan^{-1}x$ | $-\frac{\pi}{3}$ | $-\frac{\pi}{4}$ | $-\frac{\pi}{6}$ | $0$ | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ |
Practice Problems (Self-Assessment)
Level 1: Basic (2 Marks Each)
Q1. Find the principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$.
Q2. Find the value of $\tan^{-1}(\sqrt{3}) + \cot^{-1}(\sqrt{3})$.
Q3. Evaluate: $\sin\left(\cos^{-1}\frac{3}{5}\right)$.
Hint: Draw a right triangle or use $\sin^2\theta + \cos^2\theta = 1$.
Level 2: Intermediate (3 Marks Each)
Q4. Prove that $\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$.
Q5. Simplify: $\tan^{-1}\frac{1 - x}{1 + x}$, where $-1 < x < 1$.
Hint: Put $x = \tan\theta$.
Q6. Find the value of $\sin^{-1}(\sin 10)$.
Hint: 10 radians is NOT in the principal range!
Level 3: Advanced (4-5 Marks Each)
Q7. Solve: $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$.
Q8. Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$.
Hint: Use addition formula twice, first combine first two terms.
Formula Sheet (Must Remember!) 📋
Principal Value Ranges
1. $\sin^{-1}x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, domain: $[-1, 1]$2. $\cos^{-1}x \in [0, \pi]$, domain: $[-1, 1]$
3. $\tan^{-1}x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, domain: $\mathbb{R}$
4. $\cot^{-1}x \in (0, \pi)$, domain: $\mathbb{R}$
5. $\sec^{-1}x \in [0, \pi] - \{\frac{\pi}{2}\}$, domain: $|x| \geq 1$
6. $\text{cosec}^{-1}x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$, domain: $|x| \geq 1$
Complementary Identities
7. $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$8. $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$
9. $\sec^{-1}x + \text{cosec}^{-1}x = \frac{\pi}{2}$
Negative Angle Identities
10. $\sin^{-1}(-x) = -\sin^{-1}x$11. $\tan^{-1}(-x) = -\tan^{-1}x$
12. $\cos^{-1}(-x) = \pi - \cos^{-1}x$
Addition Formulas
13. $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ when $xy < 1$14. $\tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x-y}{1+xy}\right)$ when $xy > -1$
15. $2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ when $|x| < 1$