Chapter 10: Vector Algebra
Complete Board Exam Focused Notes with All Formulas & PYQs
Exam Weightage & Blueprint
Total: ~14 MarksVector Algebra is a high-scoring chapter with direct formula-based questions. Master dot product, cross product, and section formula for guaranteed marks!
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Magnitude, Unit Vector, Direction Cosines |
| Short Answer (2M) | 2 | Very High | Dot Product, Position Vector, Section Formula |
| Short Answer (3M) | 3 | High | Cross Product, Angle Between Vectors |
| Long Answer (5M) | 5 | Very High | Area of Triangle/Parallelogram, Collinearity |
⏰ Last 24-Hour Checklist
Basic Concepts (Must Know!)
- ☐ Position vector: $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$
- ☐ Magnitude: $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$
- ☐ Unit vector: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
- ☐ Direction cosines: $l = \frac{x}{r}, m = \frac{y}{r}, n = \frac{z}{r}$
- ☐ Property: $l^2 + m^2 + n^2 = 1$
Products (Very Important!)
- ☐ Dot Product: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$
- ☐ Component form: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
- ☐ Cross Product: $\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta\, \hat{n}$
- ☐ Section Formula (Internal): $\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$
- ☐ Area of triangle: $\frac{1}{2}|\vec{AB} \times \vec{AC}|$
Basic Concepts of Vectors ★★★★★
Notation: $\vec{AB}$ or $\vec{a}$ (bold) or $\overrightarrow{AB}$
Types of Vectors
Zero Vector
$\vec{0}$ or $\vec{AA}$
Magnitude = 0, direction undefined
Unit Vector
$|\vec{a}| = 1$
$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
Collinear Vectors
$\vec{b} = \lambda\vec{a}$
Parallel vectors
Position Vector & Components
$\hat{i}$ = unit vector along x-axis
$\hat{j}$ = unit vector along y-axis
$\hat{k}$ = unit vector along z-axis
Properties: $|\hat{i}| = |\hat{j}| = |\hat{k}| = 1$
$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$ (mutually perpendicular)
Direction Cosines & Direction Ratios
Direction Cosines: $l = \cos\alpha = \frac{x}{r}$, $m = \cos\beta = \frac{y}{r}$, $n = \cos\gamma = \frac{z}{r}$
Important Property: $l^2 + m^2 + n^2 = 1$
Direction Ratios: $a = x, b = y, c = z$ (proportional to direction cosines)
Vector Operations 🔥🔥🔥
Addition of Vectors
1. Commutative: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
2. Associative: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
3. Additive Identity: $\vec{a} + \vec{0} = \vec{a}$
4. Additive Inverse: $\vec{a} + (-\vec{a}) = \vec{0}$
Scalar Multiplication
• $|\lambda\vec{a}| = |\lambda||\vec{a}|$
• Direction same as $\vec{a}$ if $\lambda > 0$, opposite if $\lambda < 0$
• $\lambda\vec{a} = \lambda(x\hat{i} + y\hat{j} + z\hat{k}) = \lambda x\hat{i} + \lambda y\hat{j} + \lambda z\hat{k}$