Chapter 8: Introduction to Trigonometry

Board Exam Focused Notes, Ratios, Identities, and PYQs

Exam Weightage & Blueprint

Total: 8-10 Marks

This chapter is part of the Trigonometry Unit (12 Marks Total). Focus on ratios, specific angles, and proving identities.

Question Type Marks Frequency Focus Topic
MCQ 1 High Values of specific angles, Basic Identities
Short Answer 2 or 3 Medium Evaluation problems, Finding ratios
Long Answer 4 or 5 High Proving Trigonometric Identities

⏰ Last 24-Hour Checklist

  • Trigonometric Ratios: PBP/HHB (Pandit Badri Prasad...)
  • Table of Values: 0°, 30°, 45°, 60°, 90°.
  • Pythagoras Theorem: $H^2 = P^2 + B^2$.
  • Identity 1: $\sin^2\theta + \cos^2\theta = 1$.
  • Identity 2: $1 + \tan^2\theta = \sec^2\theta$.
  • Identity 3: $1 + \cot^2\theta = \text{cosec}^2\theta$.

Trigonometric Ratios ★★★★★

Trigonometric Ratios: Ratios of sides of a right-angled triangle with respect to its acute angles.

Mnemonics

sin A

$\frac{\text{Perpendicular}}{\text{Hypotenuse}}$

cos A

$\frac{\text{Base}}{\text{Hypotenuse}}$

tan A

$\frac{\text{Perpendicular}}{\text{Base}}$

Reciprocal Relations: $\text{cosec } A = \frac{1}{\sin A}, \quad \sec A = \frac{1}{\cos A}, \quad \cot A = \frac{1}{\tan A}$

Trigonometric Table 🔥🔥🔥

Memorize this table. It's used in 30-40% of questions.

$\angle A$ $0^{\circ}$ $30^{\circ}$ $45^{\circ}$ $60^{\circ}$ $90^{\circ}$
sin A 0 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ 1
cos A 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ 0
tan A 0 $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$ ND
⚠️ Common Mistake: $\tan 90^{\circ}$ is Not Defined (ND). Don't write it as 0 or $\infty$.

Trigonometric Identities

An equation involving trigonometric ratios of an angle is called a trigonometric identity, if it is true for all values of the angle.

Identity 1

$$ \sin^2 A + \cos^2 A = 1 $$

Derived forms:

$$ \sin^2 A = 1 - \cos^2 A $$ $$ \cos^2 A = 1 - \sin^2 A $$

Identity 2 & 3

$$ 1 + \tan^2 A = \sec^2 A $$ $$ 1 + \cot^2 A = \text{cosec}^2 A $$

Useful for proving questions.

Solved Examples (Board Marking Scheme)

Q1. Given $\tan A = \frac{4}{3}$, find other trigonometric ratios of $\angle A$. (3 Marks)

Step 1: Draw Triangle 0.5 Mark

Let $\triangle ABC$ be right-angled at B. $\tan A = \frac{BC}{AB} = \frac{4k}{3k}$.

By Pythagoras Theorem: $AC^2 = (3k)^2 + (4k)^2 = 9k^2 + 16k^2 = 25k^2$.

$AC = 5k$.

Step 2: Calculate Ratios 2.5 Marks

$\sin A = \frac{BC}{AC} = \frac{4k}{5k} = \frac{4}{5}$.

$\cos A = \frac{AB}{AC} = \frac{3k}{5k} = \frac{3}{5}$.

$\cot A = \frac{3}{4}, \sec A = \frac{5}{3}, \text{cosec } A = \frac{5}{4}$.

Q2. Prove that $\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$. (3 Marks)

Step 1: Simplify LHS 1 Mark

$LHS = \frac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(2\cos^2 \theta - 1)}$

Step 2: Use Identity 1 Mark

Substitute $\sin^2 \theta = 1 - \cos^2 \theta$ in numerator.

$= \frac{\sin \theta[1 - 2(1 - \cos^2 \theta)]}{\cos \theta(2\cos^2 \theta - 1)}$

$= \frac{\sin \theta(1 - 2 + 2\cos^2 \theta)}{\cos \theta(2\cos^2 \theta - 1)} = \frac{\sin \theta(2\cos^2 \theta - 1)}{\cos \theta(2\cos^2 \theta - 1)}$

Step 3: Conclusion 1 Mark

$= \frac{\sin \theta}{\cos \theta} = \tan \theta = RHS$. Hence Proved.

Previous Year Questions (PYQs)

2023 (1 Mark): Value of $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$ is?
Ans: $(\frac{\sqrt{3}}{2})(\frac{\sqrt{3}}{2}) + (\frac{1}{2})(\frac{1}{2}) = \frac{3}{4} + \frac{1}{4} = 1$.
2020 (3 Marks): If $\tan (A+B) = \sqrt{3}$ and $\tan (A-B) = \frac{1}{\sqrt{3}}$, find A and B.
Ans: $A+B = 60^{\circ}, A-B = 30^{\circ}$. Solving gives $A=45^{\circ}, B=15^{\circ}$.
2019 (4 Marks): Prove $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A$.
Ans: Take LCM $\rightarrow \frac{\cos^2 A + (1+\sin A)^2}{\cos A(1+\sin A)}$. Expand $(1+\sin A)^2$, simplify using $\sin^2 A + \cos^2 A = 1$.

Exam Strategy & Mistake Bank

Mistake Bank 🚨

Notation Error: Writing $\sin A$ as $\sin \times A$. This is incorrect. $\sin$ has no meaning without angle.
Squaring: $(\sin A + \cos A)^2 \neq \sin^2 A + \cos^2 A$. It is $1 + 2\sin A \cos A$.
Reciprocals: Confusing $\sin^{-1} A$ with $(\sin A)^{-1} = \text{cosec } A$.

Scoring Tips 🏆

Convert to Sin/Cos: In proving identities, if stuck, convert all terms ($\tan, \sec, \cot$) into $\sin$ and $\cos$.
Rationalize: For terms like $\frac{1}{1 - \sin A}$, multiply numerator and denominator by $(1 + \sin A)$.
Values: Memorize values of $\tan 30^{\circ}, \tan 45^{\circ}, \tan 60^{\circ}$ thoroughly.

Self-Assessment Mock Test (10 Marks)

Q1 (1M): Evaluate $2\tan^2 45^{\circ} + \cos^2 30^{\circ} - \sin^2 60^{\circ}$.


Q2 (2M): If $\sin A = 3/4$, calculate $\cos A$ and $\tan A$.


Q3 (3M): Prove that $\sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A$.


Q4 (4M): Evaluate $\frac{5\cos^2 60^{\circ} + 4\sec^2 30^{\circ} - \tan^2 45^{\circ}}{\sin^2 30^{\circ} + \cos^2 30^{\circ}}$.