Chapter 8: Introduction to Trigonometry
Board Exam Focused Notes, Ratios, Identities, and PYQs
Exam Weightage & Blueprint
Total: 8-10 MarksThis chapter is part of the Trigonometry Unit (12 Marks Total). Focus on ratios, specific angles, and proving identities.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | High | Values of specific angles, Basic Identities |
| Short Answer | 2 or 3 | Medium | Evaluation problems, Finding ratios |
| Long Answer | 4 or 5 | High | Proving Trigonometric Identities |
⏰ Last 24-Hour Checklist
- Trigonometric Ratios: PBP/HHB (Pandit Badri Prasad...)
- Table of Values: 0°, 30°, 45°, 60°, 90°.
- Pythagoras Theorem: $H^2 = P^2 + B^2$.
- Identity 1: $\sin^2\theta + \cos^2\theta = 1$.
- Identity 2: $1 + \tan^2\theta = \sec^2\theta$.
- Identity 3: $1 + \cot^2\theta = \text{cosec}^2\theta$.
Trigonometric Ratios ★★★★★
Mnemonics
sin A
$\frac{\text{Perpendicular}}{\text{Hypotenuse}}$
cos A
$\frac{\text{Base}}{\text{Hypotenuse}}$
tan A
$\frac{\text{Perpendicular}}{\text{Base}}$
Trigonometric Table 🔥🔥🔥
Memorize this table. It's used in 30-40% of questions.
| $\angle A$ | $0^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ |
|---|---|---|---|---|---|
| sin A | 0 | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1 |
| cos A | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | 0 |
| tan A | 0 | $\frac{1}{\sqrt{3}}$ | 1 | $\sqrt{3}$ | ND |
Trigonometric Identities
An equation involving trigonometric ratios of an angle is called a trigonometric identity, if it is true for all values of the angle.
Identity 1
$$ \sin^2 A + \cos^2 A = 1 $$Derived forms:
$$ \sin^2 A = 1 - \cos^2 A $$ $$ \cos^2 A = 1 - \sin^2 A $$Identity 2 & 3
$$ 1 + \tan^2 A = \sec^2 A $$ $$ 1 + \cot^2 A = \text{cosec}^2 A $$Useful for proving questions.
Solved Examples (Board Marking Scheme)
Q1. Given $\tan A = \frac{4}{3}$, find other trigonometric ratios of $\angle A$. (3 Marks)
Let $\triangle ABC$ be right-angled at B. $\tan A = \frac{BC}{AB} = \frac{4k}{3k}$.
By Pythagoras Theorem: $AC^2 = (3k)^2 + (4k)^2 = 9k^2 + 16k^2 = 25k^2$.
$AC = 5k$.
$\sin A = \frac{BC}{AC} = \frac{4k}{5k} = \frac{4}{5}$.
$\cos A = \frac{AB}{AC} = \frac{3k}{5k} = \frac{3}{5}$.
$\cot A = \frac{3}{4}, \sec A = \frac{5}{3}, \text{cosec } A = \frac{5}{4}$.
Q2. Prove that $\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$. (3 Marks)
$LHS = \frac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(2\cos^2 \theta - 1)}$
Substitute $\sin^2 \theta = 1 - \cos^2 \theta$ in numerator.
$= \frac{\sin \theta[1 - 2(1 - \cos^2 \theta)]}{\cos \theta(2\cos^2 \theta - 1)}$
$= \frac{\sin \theta(1 - 2 + 2\cos^2 \theta)}{\cos \theta(2\cos^2 \theta - 1)} = \frac{\sin \theta(2\cos^2 \theta - 1)}{\cos \theta(2\cos^2 \theta - 1)}$
$= \frac{\sin \theta}{\cos \theta} = \tan \theta = RHS$. Hence Proved.
Previous Year Questions (PYQs)
Ans: $(\frac{\sqrt{3}}{2})(\frac{\sqrt{3}}{2}) + (\frac{1}{2})(\frac{1}{2}) = \frac{3}{4} + \frac{1}{4} = 1$.
Ans: $A+B = 60^{\circ}, A-B = 30^{\circ}$. Solving gives $A=45^{\circ}, B=15^{\circ}$.
Ans: Take LCM $\rightarrow \frac{\cos^2 A + (1+\sin A)^2}{\cos A(1+\sin A)}$. Expand $(1+\sin A)^2$, simplify using $\sin^2 A + \cos^2 A = 1$.
Exam Strategy & Mistake Bank
Mistake Bank 🚨
Scoring Tips 🏆
Self-Assessment Mock Test (10 Marks)
Q1 (1M): Evaluate $2\tan^2 45^{\circ} + \cos^2 30^{\circ} - \sin^2 60^{\circ}$.
Q2 (2M): If $\sin A = 3/4$, calculate $\cos A$ and $\tan A$.
Q3 (3M): Prove that $\sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A$.
Q4 (4M): Evaluate $\frac{5\cos^2 60^{\circ} + 4\sec^2 30^{\circ} - \tan^2 45^{\circ}}{\sin^2 30^{\circ} + \cos^2 30^{\circ}}$.